rna_majiq.DPsiPrior
- class rna_majiq.DPsiPrior(a=[1.0, 75.0, 1000.0], pmix=[0.2, 0.5, 0.3])
Prior on DeltaPsi as weighted mixture of beta distributions (over [-1, 1])
- Parameters:
a, pmix (
Union[List[float]
,xr.DataArray]
) – Default parameters for prior. Must have same length. If xr.DataArray, must have dimension mixture_component. a is the parameters for each component beta. pmix is the probability of each component.
- __init__(a=[1.0, 75.0, 1000.0], pmix=[0.2, 0.5, 0.3])
Methods
__init__
([a, pmix])discretized_logpmf
([psibins, PSEUDO])Get discretized logprior for deltapsi with 2 * psibins bins
empirical_update
(psi1, psi2[, minreads, ...])Use reliable binary events from psi1,2 to return updated prior
empirical_update_EM
(dpsi, a, pmix, ...)fit_a
(dpsi, pmix_given_dpsi[, force_slab, ...])Fit a using dpsi, pmix_given_dpsi (M-step) by method of moments
fit_pmix
(pmix_given_dpsi[, pmix_eps])Fit pmix using pmix_given_dpsi (M-step)
get_empirical_dpsi
(psi1, psi2[, minreads, ...])Get high confidence empirical deltapsi from input groups of experiments
infer_pmix_given_dpsi
(dpsi, a, pmix)Get probability of membership to mixture given observaion (E-step)
legacy_empirical_replace
(dpsi[, pmix_mask])This isn't an update so much as replacement
plot
([breaks, ax])Plot prior distribution over deltapsi