new_majiq.DPsiPrior

class rna_majiq.DPsiPrior(a=[1.0, 75.0, 1000.0], pmix=[0.2, 0.5, 0.3])

Prior on DeltaPsi as weighted mixture of beta distributions (over [-1, 1])

Parameters:

a, pmix (Union[List[float], xr.DataArray]) – Default parameters for prior. Must have same length. If xr.DataArray, must have dimension mixture_component. a is the parameters for each component beta. pmix is the probability of each component.

__init__(a=[1.0, 75.0, 1000.0], pmix=[0.2, 0.5, 0.3])

Methods

__init__([a, pmix])

discretized_logpmf([psibins, PSEUDO])

Get discretized logprior for deltapsi with 2 * psibins bins

empirical_update(psi1, psi2[, minreads, ...])

Use reliable binary events from psi1,2 to return updated prior

empirical_update_EM(dpsi, a, pmix, ...)

fit_a(dpsi, pmix_given_dpsi[, force_slab, ...])

Fit a using dpsi, pmix_given_dpsi (M-step) by method of moments

fit_pmix(pmix_given_dpsi[, pmix_eps])

Fit pmix using pmix_given_dpsi (M-step)

get_empirical_dpsi(psi1, psi2[, minreads, ...])

Get high confidence empirical deltapsi from input groups of experiments

infer_pmix_given_dpsi(dpsi, a, pmix)

Get probability of membership to mixture given observaion (E-step)

legacy_empirical_replace(dpsi[, pmix_mask])

This isn't an update so much as replacement